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STRUCTURAL MECHANICS OF DEFORMATION AND FRACTURE 

The genera l  o b j e c t i v e  of t h i s  study i s  t h e  development of  an approach t o  

mechanical design and m a t e r i a l  development which t akes  account of some o f  t h e  

contemporary understanding of t h e  physics of s o l i d s .  P a r t i c u l a r  a t t e n t i o n  i s  

given t o  t h e  temperature dependence of t h e  i r r e v e r s i b l e  p a r t  of t h e  deforma- 

t i o n  which i s  r e l a t e d  t o  the  atomic s c a l e  s t r u c t u r e  of  t h e  s o l i d  through an 

energy of a c t i v a t i o n .  Pa r t  of t h e  work involves  t h e  examination of  t he  behav- 

i o r  of  model m a t e r i a l s  i n  s e l e c t e d  tes t  s i t u a t i o n s .  The responses of  the  

models a r e  then  compared wi th  f ea tu res  of  t h e  behavior of r e a l  m a t e r i a l s  f o r  

which phys ica l  r a t i o n a l i z a t i o n s  a r e  being sought.  

During t h e  cu r ren t  q u a r t e r ,  a hammer impact problem was considered from 

t h i s  po in t  of  view. The r e s u l t s  of t h i s  s tudy have been presented a t  a m e e t -  

ing of  t h e  Society of Rheology and submitted f o r  pub l i ca t ion  i n  t h e i r  Trans- 

a c t i o n s .  That p re sen ta t ion  c o n s t i t u t e s  t h e  body of t h i s  r e p o r t .  

This  work augments t h e  ear l ier  s t u d i e s  of t h e  responses  of s i m i l a r  models 

t o  s impler  stress and s t r a i n  program which a r e  c i t e d  in t he  b ib l iography.  I n  

a d d i t i o n  t o  i l l umina t ing  t h e  r e l a t i o n s h i p s  between m a t e r i a l  response and mate- 

r i a l  s t r u c t u r e ,  t h e  new r e s u l t s  a r e  r e l e v a n t  t o  m a t e r i a l  forming processes ,  lab-  

o r a t o r y  t e s t i n g  of  m a t e r i a l s  and the des ign  of devices  for t h e  a t t e n u a t i o n  of  

impact loads .  

The ma te r i a l  i n  t 'lis r epor t  i s  p a r t  of a proposed t h e s i s  t o  be submitted t o  

Prof .  W. F. Ames  o f  t h e  Univers i ty  of Delaware i n  connection wi th  t h e  candidacy 

o f  M r .  Mueller f o r  t h e  Ph. D o  degree. 

. 



ABSTRACT 

As part of a continuing exploration of the mechanical 

behavior of materials which have temperature dependent pro- 

perties, the effect of a hammer blow on a small sample of 

model viscoelastic material is considered. In this situation, 

the duration of the experiment is long compared with the 

time required for stress equilibrium to develop and short in 

comparison with the thermal relaxation time of the sample. 

The analysis shows how a material which responds in an almost 

perfectly elastic manner to a light blow can respond in a 

viscous manner to a heavy blow. It also suggests that a 

homogeneous continuum with properties that would make it 

acceptable as a structural material must be brittle. This 

result may contribute to the understanding of the important 

relationship between microstructure and ductility. 

The hammer experiment involves relatively high strain 

rates which vary continuously during the deformation. In 

earlier work, the constant deformation rate case was studied. 

The latter situation is difficult to produce in the laboratory 

in the range of rates of interest here and is less likely to 

arise in practice. 
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RESPONSES OF MODEL VISCOELASTIC MATERIALS TO IMPACT 

Introduction 

This report is one of a series describing exploratory 

studies of the mechanical behavior of materials which have 

temperature dependent properties. With such materials, the 

heat produced by the irreversible part of the work of deform- 

ation can have a strong influence on the outcome of an exper- 

iment (1-8). The present study relates to the effect of 

impact loads on viscoelastic materials, As before, the 

approach that is taken involves the examination of the res- 

ponses of selected models of materials to simple test situations. 

The relevance of the models is then estimated by comparing these 

responses with features of the behavior of real materials for 

which physical rationalizations are being sought. 

supplement the earlier studies and are a further step in the 

development of an understanding of the effects of energy conser- 

vation on the behavior of materials. 

The results 

The problem that is considered here is similar to that 

which arises when a short cylinder of material, standing on an 

anvil, is hit with a hammer. Real experiments of this type are 

easy to perform in the laboratory and they simulate a condition 

which is of practical interest. These experiments involve 

relatively high strain rates 



which vary continuously during the process. The present study 

is thus distinguished from one described earlier in which the 

deformation of model viscous cylinders at various constant 

rates was c ~ n i d e r e c !  (6), That constant rate case, in the 

range of interest here, is difficult to produce in the laboratory 

and is less likely to occur in nature. 

In the absence of thermal effects and changes of the shape 

of the test piece, the solutions of this problem are familiar. 

For example, with perfectly elastic materials the hammer will 

bounce away from the sample with a velocity equal and opposite 

to its initial velocity. With viscoelastic materials the bounce 

velocity will be lower and there will be no bounce when the 

conditions for critical damping are met. 

With heating, the effective viscosity is reduced and the 

damping increases during the experiment. As a consequence, the 

amount of bounce will depend on the severity of the blow as well 

as the properties of the material. In particular, it is shown 

that a material which responds in a generally elastic manner to 

a light blow that does not produce much heat may respond inelas- 

tically to a heavy blow. This is, of course, precisely Nhat is 

observed with real materials. The model material can also show 

a strain rate dependent yield strength similar to that observed 

in real experiments. Under some conditions very high tempera- 

tures are produced in the model material which might lead to 

catastrophic failures comparable with brittle fracture in real 

materials. 
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Discussion of the Xodel Experiment 

The model experiment which is considered has the following 

features. The duration of the experiment is long in comparison 

with the time required for stress equilibrium to develop in the 

system and short in comparison with the thermal relaxation time 

of the test piece. In other words, the deformation is treated 

as quasi-static and adiabatic. These conditions are quite 

appropriate in many real hammer experiments. 

The instantaneous deformation is considered to be divided 

into two independent parts. One is reversible and proportional 

to the current value of the force. The other is irreversible 

and depends on the time integral of the force. In other words 

the system is treated as a Maxwell Model composed of an ideal 

elastic element in series with an ideal viscous element. This 

also implies that the model material is homogeneous and iso- 

tropic which is not generally true of real materials. The 

results suggest an important role for heterogeneity in determin- 

ing the behavior of real materials. 

The temperature effect is considered to arise from the work 

done on the viscous element. On the basis of the contemporary 

view of the physics of materials, it may be expected that the 

temperature dependence of the viscosity is very much stronger 

than the temperature dependence of the elasticity. For these 

compGtations the latter is neglected. The pressure dependence 
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of the viscosity is also neglected. Similar idealizations were 

made in the earlier studies which gave results in general agree- 

ment with experience. 
r"' Lyle  chai-lgifig shape of the test plece is also considered, 

subject to the assumption of constant volume. In compression 

experiments, the increase in cross-sectional area tends to off- 

set the force reduction caused by heating. In tension experi- 

ments the change in section area augments the effect of heating. 

In practice, when the sample becomes very short or very long, 

heat losses to the environment can be expected so that the 

adiabatic assumption loses i t s  validity. Also ,  in real tensile 

experiments, non-uniform strain distribution are likely to 

arise. 

Details of the Computation 

The instantaneous velocity of the hammer after impact is 

the sum of the rate of displacement of the elastic element eE 
and that of the viscous element cv. 

e 

0 

i =  P, E ti,, 
The force producing the deceleration of the hammer is the 

restoring force of the strained elastic element which is equal 

to the force on the deforming viscous element. 

c 

in which M is the mass of the hammer, E is the effective spring 
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constant and H is the effective visc.osity. 

The substitutions 

c c 3 =  

2=mt (3) 
(4) 

in which C0 is the hammer velocity at impact and t is time 
I 

define the non-dimensional velocities 

a% 
d =  E E= 

so that equation 1 becomes 

in which 

For small deformations Q is essentially a constant, Qo_, 

and equation (7) leads to the linear damped oscillations refer- 

red to in the introductory remarks. As would be expected the 

value of Qo is an important property of the system. It is 

similar to the quantity /7 cited in reference 8 and its designa- 
tion is intended to suggest the quality factor used by electrical 

engineers in the discussion of the behavior of circuits and com- 

ponents. The value of Qo determines the damping in the system. 

When Qo is high,bounce will occur, when it is low,there will be 

no bounce. Furthermore, for systems that bounce, the value of 

l/Qo indicates the fraction of the total energy that is l o s t  per 

bounce. 
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In general, however, Q is not constant. The effective 

viscosity, for example, can be factored to give 

H =  (9) 
in which , A,and $ are respectively the coefficient of 

viscosity, cross-sectional area and length of the viscous ele- 

ment, which vary in the course of the deformation. 

'I 

Having in mind a hammer made of an elastic material and 

much larger than the test piece, the elastic deformation of the 

sample will be negligible in comparison with that of the hammer. 

Changes of the effective spring constant and mass in the exper- 

iment are, therefore, neglected. 

Equation 9 can also be written 

in which the zero subscripts refer to the initial values of the 

parameters. Assuming incompressibility this becomes 

The current length of the sample is then given by 
*t 

The sign option allows the computation to be applied to both 

compression and elongation of the sample. 

The viscosity r a t i o  in equations 10 and 11 is now assumed 

to depend only on the temperature, T, according to 
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in which 'la" is a constant of the material and +is defined 

by equation 14. The current temperature is determined by the 

time integral of the power input to the viscous element divided 

by its hea.t capacity so that 

in which c is the specific heat of the material. 

and the negative sign in front of Vc indicates that the impact 
compresses the sample and the positive sign indicates that the 

impact stretches the sample. Equations 7 and 16 describe 

experiments in which the hammer sticks to the sample. If, when 

d d / d E  changes sign the hammer separates from the sample, the 

solution is complete when this sign change occurs. 

Results of Computation 

The responses of nine different representative model 

materials are shown in Figures 1-12. A range of initial hammer 
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velocities is applied to each material and both compression 

and tension are considered. The experiments are character- 

ized by the values of the non-dimensional groups defined by 
Qo, , aiid V0. mL-,?. I l l G  first ~f these, Qo, cm~pletely chsract- 

erizes the small deformation, isothermal response of the 

model material which is linearly related to the initial hammer 

velocity. When Qo is large, the response is generally elastic. 

When Qo is small, it is generally viscous. Critical damping 

occurs for Qo=0.5 .  

The group, 6 , contains the temperature coefficient of 
the viscosity and the heat capacity of the sample. This 

quantity together with the reduced, initial hammer velocity, 

Vo, determine the magnitude of the thermal effect. The value 

of S c a n  be qualitatively correlated with the nature of a real 

material on the atomic scale through the energy of activation 

for the deformation process. 

The significance of these groups is further indicated by 

the fact that the adiabatic temperature developed in the test 

piece when all of the kinetic energy of the hammer is converted 

This is the actual temperature when the damping is supercriti- 

cal and no bounce occurs. For high Qo systems the actual 

temperature generated by the blow before the hammer bounces 

depends on the new group 
K 2 6  

'= -96 
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The r e s u l t s  are presented  j u s t  as theyare p l o t t e d  by 

t h e  computer and are d iscussed  as if t h e y  were r e a l  expe r i -  

menta l  r e s u l t s .  The f i g u r e s  shavthe  h i s t o r y  of t h e  reduced 

t empera tu res ,  $6 t h e  reduced f o r c e s ,  dd / ; lZ  (which a r e  

p r o p o r t i o n a l  t o  t h e  deformation of t h e  e l a s t i c  e lement)  and 

t h e  reduced l e n g t h s  of t h e  viscous element (which i n  t h i s  

c a s e  corresponds to t h e  s a m p l e , K =  Lv/Lo) i n  terms of t h e  

reduced t ime, t . The curves are  d o t t e d  a f t e r  t h e  f o r c e  

changes s i g n .  The d o t t e d  p o r t i o n s  would apply i f  t h e  hammer 

adhered to t h e  sample a f t e r  impact. They  sometimes i n d i c a t e  

t h e  r e s i d u a l  k i n e t i c  energy i n  t h e  bounce. 

T h e  responses  a r e  q u i t e  d i v e r s e .  F igu res  1-3 show t h e  

behav io r  of a f a i r l y  e l a s t i c  m a t e r i a l  ( Q D = l O )  i n  compression. 

I n  F igu re  1, t h e  h e a t i n g  e f f e c t  i s  t h e  lowest  (6.2.0) t h e  

r ange  of B i s  0.05 to 0.450, and t h e  range of #max i s  0.5-4.5. 

Gross n o n - l i n e a r i t y  appears  only i n  t h e  d o t t e d  p o r t i o n  of t h e  

curves ;  that  i s ,  a f t e r  t h e  bounce. Notice how a t  t he  h ighes t  

v e l o c i t y  t h e  bouncing hammer might s t r e t c h  t h e  hea ted  sample 

i f  i t  adhered.  

F igu re  2 shows t h e  r e s u l t s  w h e n r =  10 t h e  range of B i s  

0.01-1.0, and the  range  of omax i s  0.1-10. 

c a n t  f e a t u r e  of t h i s  f i g u r e  and a l s o  of F igu re  3, f o r  which 

g= 20 i s  t h e  ab rup t  onset of t he  e f f e c t  of t h e  heat .  That 

T h e  most s i g n i f i -  

i s ,  a t  t h e  h i g h e s t  hammer v e l o c i t y  t h e  tempera ture  i s  a s m a l l  
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f r a c t i o n  of 4 
va lue .  It then  r i ses  r a p i d l y  t o  t h e  f u l l  va lue .  I n  F igu re  3, 

t h e  range of va lues  of B i s  0.02-0.50 and t h e  range  of 4 max 

i s  0.2 tz 5.0. 

u n t i l  t h e  damping b u i l d s  up  t o  t h e  c r i t i c a l  

F igu res  4-6 show t h e  behavior  i n  compression of a material 

which has more i n i t i a l  damping ( Q o = l . O ) .  

g= 2 shows t h e  responses  i n  t h e  range  B =0.02-2.0 and 4 max 

0.02-2.0. T h i s  material  shows a more g radua l  onse t  of damp- 

F igu re  4, f o r  which 

- 
i n g  because of t he  lower value of Qo,  Figure  5, f o r  & ' =  10, 

B=0.1-10 and dmac 0.1-10, shows a new e f f e c t .  

e s t  hammer v e l o c i t y ,  t h e  sample c o l l a p s e s  b e f o r e  t h e  k i n e t i c  

A t  t h e  high- 

energy of t h e  hammer i s  spent .  A s  a r e s u l t  of t he  geometr ic  

e f f e c t  t he  f o r c e  r ises  again.  I n  e f f e c t  t h e  hammer bounces 

o f f  t h e  a n v i l  a f t e r  u s i n g  some of i t s  energy t o  produce t h e  

deformation.  

shows g e n e r a l l y  s i m i l a r  behavior .  

- 
Figure  6, f o r  &= 20, B =0.2-20 and # ma; 0.2-20. 

F igu res  7-9 show t h e  behavior ,  i n  compression, of a mate- 

r i a l  f o r  which the  i n i t i a l  damping i s  s u p e r c r i t i c a l  (Q; 0.1). 

Here t h e  va lue  of B i s  i r r e l e v a n t  and on ly  amax must be con- 

s i d e r e d .  

O s c i l l a t i o n s  are shown i n  the f i g u r e s  a t  the  h i g h e r  i n i t i a l  

v e l o c i t i e s  which a r e  due t o  t h e  bounce of t h e  hammer a f t e r  t h e  

sample i s  f l a t t e n e d .  S t r e t c h i n g  of t h e  sample, i f  i t  remains 

a t t a c h e d  t o  t h e  hammer i s  conspicuous i n  t h i s  f igure.  

I n  F igu re  7 t h e  range of #,,, i s  0.02 t o  4.5. 
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Figures 8 and 9,  similarly, show no oscillations at the 

lowest hammer velocities and saturation or bottoming at the 

higher velocities. 

* F-imivPq -0-- - -  10-12 are  d .pr i~ i .pd  from t e n s i l e  experiments. In 

these the bottoming does not occur. Hcwever, the question of 

whether the flight of the hammer is arrested by the impact 

arises. Figure 10 shows the response of the generally elastic 

sample ( Q e = l O ) .  

here as in the compression experiment. The hammer is arrested 

at each velocity but it almost gets away at the highest velo- 

city. Figure 11 shows the response of the material with Q = 1 .  

Here a damped oscillation is shown at the lowest velocity. At 

the highest velocity the hammer does not stop. Figure 12 shows 

almost typical viscous behavior (Q@=.l). 

hammer is arrested at the lower velocity. 

The abrupt yield of this material appears 

0 

It appears that the 

Discussion of Results 

In the problem considered above the force and deformation 

programs are determined bythe properties of the material and 

certain features of the test situation. This is in contrast 

to the earlier studies in which these programs were inputs. 

The discussion here is, therefore, somewhat more complicated. 



In any'case, it is desirable to establish criteria for the 

significance of heating effects in any particular experiment. 

The numbers B and (/Imax are appropriate. 

The results conform generally with experience with fairly 
t 

soft'materiais and with some types of harder matcrials which 

are brittle. The application of the first law of thermo- 

dynamics provides an explanation for certain mechanical 

responses which is certainly incomplete. However, whatever 

additional rationalization is applied would be enriched by 

these energy considerations. 

One of the somewhat unexpected consequences of this study 

is that it suggests that any homogeneous, viscoelastic material 

which has properties which would make it acceptable for struc- 

tural applications would necessarily be brittle. This follows 

from the abrupt development of criticality in the damped sys- 

tem even when the effective viscosity changes slowly. It 

would follow then that the ductility of such materials must 

depend on their heterogeneity or microstructure. This infer- 

ence is in agreement with some of the prevailing views of 

students of material behavior. A mechanism for this effect 

was proposed in an earlier report (5). 
It may be noticed that if a purely viscous model were hit 

by the hammer, the initial value of the force would be infinite. 

It would, however, rapidly decay to essentially the same form 

as shown in the low Qocases described above. In any real system 
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some elasticity will exist and the force will be zero at the 

instant of impact. 
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CAPTIONS FOR FIGURES 

Figure 1 - Reduced temperature, reduced force and reduced length 
for a system characterized by Qo= 10.0 and g= 2.0 are 

plotted as a function of reduced time. Solution . .  

curves for values of reduced initial compressive ham- 

mer velocity, Vo=0.5, 1.0, and 1.5 are superimposed. 

Figures 2 through @ are the same as Figure 1 except for differ- 
9 

ences as noted below. 

Figure 2 - Qo= 10.0,~=10.0 

Figure 4 - Q o =  1.0 r -  2.0 vo -0.1, 0.5, 1.0 

Figure 5 - Q o -  l . O , C =  10.0 vo: 0.1, 0.5, 1.0 

Figure 6 - Q o = l . O  $ =  20.0 Vor 0.1, 0.5, 1.0 

Figure 7 - Qo= 0.1, E =  2.0 VO'O.1, 0.5, 1.5 

Figure 8 - Q o = O . l  6 ;  10.0 vo= 0.1, 0.5, 1.0 
Figure 9 - Q o =  0.1, c-- 20.0 v o = o . l ,  0.5, 1.0 

Vo'O.1, 0.5, 1.0 

Figure 3 - Q o =  10.0 g= 20.0 Vo ~0.1, 0.5, 0.6 
) 

1 

Figure10 - Reduced temperature, reduced force and reduced length 

f o r  a system characterized by Qo= 10.0 and &.=!L.g are 

plotted as a function of reduced time. Solution 

curves for values of reduced initial elongative ham- 

mer velocity, Vo=O.l, 0.6, 0.7 are superimposed. 

Figure 11- Q o 5  1.0, % - 2 . O  

(Same as Figure 10 except Vos 0.1, 0.5, 1.0) 
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F i g u r e  1 2  - Q o z 0 . 1  8 - 2 0 . 0  

(Same as F igure  10) 

(V, 0.05, 0.5 are ......) 
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Figure Seven. Compression .6 = 2 . 0  
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Figure Eight. Compression 

Q =  0.1 
6 = 10.0 I 
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Figure Nine. Compress ion 6 =  20.0  
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Figure Ten. Elongation 

Q =  10.0 
6 s10.0 
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Figure Eleven. Elongation Q =  1.0 
h =2.0 
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Figure Twelve. Elongation 5 = 20.0  


